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“I never did anything by accident, nor did any

of my inventions come by accident; they came

by work.”

— Stephen Hawking (1942-2018)

In the earlier lecture notes, we have discussed divergence theorem and Green’s theorem.

Here we discuss Stokes’ theorem which relates surface integral of a derivative of a function

to the line integral of the function and the line integral is evaluated over the perimeter

bounding the surface. Stokes’s theorem, in equation form, is written as

˛
L
V · dl =

¨
A
∇×V · da , (1)

which states that line integral of a continuous vector function V around a closed curve L

is equal to normal surface integral of curl V over an open surface bounded by A provided

that first derivative of V is continuous.

Proof: In order to prove the above theorem, we consider the right-hand side of Eq. (1) and

write it in component form as

¨
A

(∇×V) · n̂ da =

¨
A

(∇× îVx +∇× ĵVy +∇× k̂Vz) · n̂ da . (2)

Next, we consider the first term on the right-hand side of above equation and write it in

component form as

¨
A

(∇× îVx) · n̂ da =

¨
A

(∂Vx

∂z
ĵ · n̂− ∂Vx

∂y
k̂ · n̂

)
da . (3)
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FIG. 1: (i).
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FIG. 2: (ii).

See the Figures (1) and (2), the projection of da on the xy-plane gives us the following

relation

k̂ · n̂ da = dx dy . (4)

Next, we consider the segment Q1Q2 (See figures (1) and (2)) be the intersection of the

surface A with a plane which is parallel to the yz-plane at a distance x from the origin. Now

along the segment Q1Q2 we can write

dVx =
∂Vx

∂y
dy +

∂Vx

∂z
dz , (5)

and tangent dr (say) to the segment Q1Q2 at Q is given by

dr = dy ĵ + dz k̂ , (6)
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which is perpendicular to n̂. Next, we can write

dr · n̂ = 0 = dy ĵ · n̂ + dz k̂ · n̂ , (7)

which gives

ĵ · n̂ = −dz

dy
k̂ · n̂ = −dz

dy

(
dx dy

da

)
(8)

or

ĵ · n̂ da = −dx dz . (9)

Now using relations (4), (5) and (9) in Eq. (3) and obtain

¨
A

(∇× îVx) · n̂ da =

¨
A

(∂Vx

∂z
ĵ · n̂− ∂Vx

∂y
k̂ · n̂

)
da

=

¨
A

(
− ∂Vx

∂z
dx dz − ∂Vx

∂y
dx dy

)
= −

¨
A

(∂Vx

∂z
dz +

∂Vx

∂y
dy

)
dx

= −
ˆ

dx

ˆ
dVx

= −
ˆ [

Vx(x, y2, z2)− Vx(x, y1, z1)
]
dx . (10)

See the figures, the periphery at Q1 is positive, dx = dlx and it is negative at Q2, dx = −dlx.

Now the above equation can be written as

¨
A

(∇× îVx) · n̂ da =

ˆ
Vx(x, y2, z2) dlx +

ˆ
Vx(x, y1, z1) dlx . (11)

The first term on the right-hand side of above equation represents the back part and the

second term represents the front part shown in the Fig. (1). The sum of both terms gives´
L Vx dlx. Therefore, we can write

¨
A

(∇× îVx) · n̂ da =

˛
L
Vx dlx . (12)

Using similar procedure we obtain

¨
A

(∇× ĵVy) · n̂ da =

˛
L
Vy dly (13)

and ¨
A

(∇× k̂Vz) · n̂ da =

˛
L
Vz dlz . (14)
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Now combining Eqs. (12), (13) and (14), we obtain

¨
A

(∇×V) · n̂ da =

˛
L
V · dl . (15)
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